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There are two definitions of Blatt-Biedenhan’s Z-coefficient, the one in the original paper [1]

Z(l1j1l2j2; sL) = i−l1+l2+L l̂1 l̂2ĵ1ĵ2〈l1l200|L0〉W (l1j1l2j2; sL), (1)

and another one by Lane and Thomas [2]

Z(l1j1l2j2; sL) = l̂1 l̂2ĵ1ĵ2〈l1l200|L0〉W (l1j1l2j2; sL), (2)

where the difference is the phase factor i−l1+l2+L. We follow the notation by Lane and Thomas.
The angular distribution of shape elastic scattering (for neutrons) is given by the scattering amplitudes A(θ) and B(θ) at a

given center-of-mass angle θ;

A(θ) =
i

2k

∑
l

{
(l + 1)(1− Sl,l+1/2) + l(1− Sl,l−1/2)

}
Pl(cos θ), (3)

B(θ) =
1

2k

∑
l

{
Sl,l−1/2 − Sl,l+1/2

}
P 1
l (cos θ), (4)

(
dσ

dΩ

)SE

= |A(θ)|2 + |B(θ)|2, (5)

where Slj is the optical model S-matrix element, Pl(cos θ) is the Legendre function, and P 1
l (cos θ) is the associated Legendre

function. The same angular distribution can be expanded by the Legendre function as(
dσ

dΩ

)SE

=
∑
L

BLPL(cos θ), (6)

and the coefficients are given as

BL =
1

8k2

∑
l1j1l2j2

[
Z(l1j1l2j2;

1

2
L)

]2
<{(1− Sl1j1)(1− Sl2j2)∗} . (7)

This expression is independent of the target spin IA. Since the Z-coefficient is squared, the phase facotr of Z(l1j1l2j2; 1/2L)
does not matter. In this expansion, 4πB0 is equal to the angle-integrated elastic scattering cross section. To confirm the equality
of Eq. (5) and Eq. (6) we calculated the shape elastic scattering angular distribution for 152Gd at 20 MeV, with both equations,
shown in Fig. 1. Koning-Delaroche global optical potential was used.

The differential cross section for the compound reaction is written in the same way as the shape elastic scattering;(
dσ

dΩ

)
ab

=
∑
L

BLPL(cos θb), (8)

in which a particle a with the spin ia collides with the targe nucleus A with the spin IA, forming a compound state J , then
decays into a channel where a particle b with the spin ib is emitted leaving the residual nucleus B with the spin IB . Parity is not
written explicitly, but it must be conserved at each spin coupling.

The BL coefficient is given by Moldauer’s statistical theory as

BL =
1

4k2
(−)IB−IA+ib−ia

(2ia + 1)(2IA + 1)

1

N

∑
J

(2J + 1)2
∑
laja

∑
lbjb

Wab {Xlaja(Ea)Xlbjb(Eb) + δIAIBδEaEb
Ylaja,lbjb(Ea, Eb)} , (9)

where Wab is the width fluctuation factor, and

Xlj(E) = Z(ljlj; iL)W (jJjJ ; IL)Tlj(E), (10)

Ylaja,lbjb(Ea, Eb) = (1− δlalb)(1− δjajb)
{
Z(lajalbjb; iaL)W (JjaJjb; IAL)

}2
Tlaja(Ea)Tlbjb(Eb) (11)

and the normalization N is given by integrating/summing all possible decay channels.

N =
∑∫

Tlj(E)dE. (12)

For the Hauser-Feshbach theory, Wab = 1 and Ylaja,lbjb(Ea, Eb) = 0.
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FIG. 1. Calculated shape elastic scattering angular distribution of 152Gd at 20 MeV. The symbols are from the scattering amplitudes at each
angle, and the curve is from the Legendre coefficients.

The term that includes Xlaja(Ea)Xlbjb(Eb) has the factor of Z(lajalaja; iaL)Z(lbjblbjb; ibL). When the Z-coefficients are
given by the original definition,

Z(lajalaja; iaL)Z(lbjblbjb; ibL) = i2L(2la + 1)(2ja + 1)(2lb + 1)(2jb + 1)

× 〈lala00|L0〉〈lblb00|L0〉
×W (lajalaja; iaL)W (lbjblbjb; ibL). (13)

Since L is always even for the compound reaction, i2L becomes just one. Therefore the Legendre coefficientBL will be identical
for the both definition, Z and Z (note that Z-coefficient in Y is squared). As an example, the neutron elastic scattering angular
distributions for 2-MeV neutron induced reaction on 58Ni are shown in Fig. 2, where the compound elastic scattering is 90-degree
symmetric by definition.

[1] J.M. Blatt, L.C. Biedenharn, Rev Mod Phys. 24, 258 (1952).
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FIG. 2. Calculated shape and compound elastic scattering angular distributions for 58Ni at 2 MeV.


